

NB: Chaque élève doit posséder son propre matériel: (calculatrice, compas, règle,).

EXERCICE 1 (4,5 points)

A/ On donne E =
$$2\sqrt{27}$$
+ $3\sqrt{75}$ - $3\sqrt{48}$ et F = $\frac{22}{\sqrt{18}-\sqrt{8}}$

- 1) Ecrire E sous la forme a $\sqrt{3}$ et F sous la forme b $\sqrt{2}$ où a et b sont deux entiers.
- 2) Démontrer que E F = $\frac{1}{E+F}$
- 3) comparer E et F et justifier.
- B/ Voici les distances (en km) qui séparent le soleil de trois planètes du système solaire :

Vénus: 105 ×10⁶

Mars: 2250 ×10⁵

Terre: 1,5 ×10⁸

Parmi ces trois planètes, quelle est celle qui est la plus éloignée du soleil ? Justifier.

C/ simplifier les expressions suivantes : G = $\left|3\sqrt{2} - 4\right| - \left|\sqrt{12} - 2\sqrt{3}\right| - 3\sqrt{2}$

EXERCICE 2 (4 points)

Le directeur d'un lycée veut faire le carrelage de la cour d'un lycée à la forme rectangulaire de longueur 640m et de largeur 520 m

- 1) Déterminer le PGCD(640,520).
- 2) Le sol de la cour doit être entièrement recouvert par un carrelage de même dimension le directeur a le choix entre des carrelages dont les côtés mesurent 30cm ,40 cm et 45 cm.
- a) Parmi ces dimensions, les quelles peut-on choisir pour que les carrelages puissent être posés sans être découpés ?
- b) Dans le cas choisi combien faut-il utiliser de pièces de carrelage,

EXERCICE 3(4 points)

- 1) Tracer un segment [EF] de 10 cm de longueur puis un demi-cercle de diamètre [EF]. Placer le point G sur ce demi-cercle, tel que EG = 9 cm.
- a) Démontrer que le triangle EFG est rectangle.
- b) Calculer la longueur GF.
- 2) Placer le point M sur le segment [EG] tel que EM = 5.4 cm et le point P sur le segment [EF] tel que

EP = 6 cm.

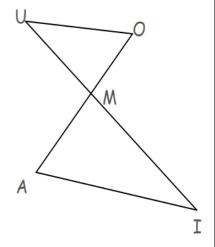
2) Démontrer que les droites (FG) et (MP) sont parallèles

EXERCICE 4(3.5 points)

Les segments [OA] et [UI] se coupent en M.

On a : MO = 21; MA = 27; MU = 28; MI = 36; AI = 45 (L'unité de longueur étant le millimètre).

- 1) Prouver que les droites (OU) et (AI) sont parallèles.
- 2) Calculer la longueur OU.
- 3) Prouver que le triangle AMI est un triangle rectangle.
- 4) Montrer que les angles MAI et MOU ont la même mesure.



Nom ≺énom	N°	1S

Feuille Annexe à rendre (4points)

Indiquer les réponses sur cette feuille en inscrivant pour chaque ligne, la lettre (A, B, ou C) correspondant à la réponse dans la dernière colonne.

Questions	Propositions		
	Α	В	С
Qualia ast la valaur axacta da : $\sqrt{4+16}$?	10	4.47	2√5
$\sqrt{16}\sqrt{5} =$	4√5	5√4	$\sqrt{21}$
Comment traduire $x \in]-3$; $2[$ en utilisant des inégalités ?	-3≤ <i>x</i> ≤ 2	-3 <x<2< td=""><td>-3<x≤ 2<="" td=""></x≤></td></x<2<>	-3 <x≤ 2<="" td=""></x≤>
$\frac{3\times2+8}{4+2\times0.5} =$	9	2.8	2.7
$\sqrt{80} + \sqrt{20} =$	6√5	$\sqrt{100}$	
Sur la figure l'angle $\widehat{BAC} = 51^\circ$. Alors $\widehat{BOC} =$	129°	102°	51°